Supervised and Extended Restart in Random Walks for Ranking and Link Prediction in Networks

نویسندگان

  • Woojeong Jin
  • Jinhong Jung
  • U. Kang
چکیده

Given a real-world graph, how can we measure relevance scores for ranking and link prediction? Random walk with restart (RWR) provides an excellent measure for this and has been applied to various applications such as friend recommendation, community detection, anomaly detection, etc. However, RWR suffers from two problems: 1) using the same restart probability for all the nodes limits the expressiveness of random walk, and 2) the restart probability needs to be manually chosen for each application without theoretical justification. We have two main contributions in this paper. First, we propose Random Walk with Extended Restart (RWER), a random walk based measure which improves the expressiveness of random walks by using a distinct restart probability for each node. The improved expressiveness leads to superior accuracy for ranking and link prediction. Second, we propose SuRe (Supervised Restart for RWER), an algorithm for learning the restart probabilities of RWER from a given graph. SuRe eliminates the need to heuristically and manually select the restart parameter for RWER. Extensive experiments show that our proposed method provides the best performance for ranking and link prediction tasks, improving the MAP (Mean Average Precision) by up to 15.8% on the best competitor.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Link Prediction Method Based on Learning Automata in Social Networks

Nowadays, online social networks are considered as one of the most important emerging phenomena of human societies. In these networks, prediction of link by relying on the knowledge existing of the interaction between network actors provides an estimation of the probability of creation of a new relationship in future. A wide range of applications can be found for link prediction such as electro...

متن کامل

A Regularization Framework for Learning from Graph Data

The data in many real-world problems can be thought of as a graph, such as the web, co-author networks, and biological networks. We propose a general regularization framework on graphs, which is applicable to the classification, ranking, and link prediction problems. We also show that the method can be explained as lazy random walks. We evaluate the method on a number of experiments.

متن کامل

Link Prediction using Network Embedding based on Global Similarity

Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...

متن کامل

پیشگویی پیوند در شبکه های اجتماعی با استفاده از ترکیب دسته بندی کننده ها

Abstract Link prediction in social networks is one of the most important activities in analysis of such networks. The importance of link prediction in social networks is due to its dynamic nature. While members and their relationships (links) in such networks are continuously increasing, links may be missed due to various reasons. By predicting such links, the possibility of extension, compl...

متن کامل

Providing a Link Prediction Model based on Structural and Homophily Similarity in Social Networks

In recent years, with the growing number of online social networks, these networks have become one of the best markets for advertising and commerce, so studying these networks is very important. Most online social networks are growing and changing with new communications (new edges). Forecasting new edges in online social networks can give us a better understanding of the growth of these networ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1710.06609  شماره 

صفحات  -

تاریخ انتشار 2017